GATE - 1992

Electronics and communication Engineering

$(40 \times 2 = 80 \text{ marks})$

- 1.1. Relative to a given fixed tree of a network,
 - (a) Link currents form an independent set,
 - (b) Branch voltage form an independent set
 - (c) Link currents form an independent set
 - (d) Branch voltage form an independent set
- 1.2. For a 2-port network to be reciprocal,

- (a) $z_{11} = z_{22}$ (b) $y_{21} = y_{12}$ (c) $h_{21} = -h_{12}$ (d) AD BC = 0
- 1.3. For the series R-L circuit of the given first figure, the partial fissure diagram at a certain frequency is shown in the given second figure. The operating frequency of the circuit is

- (a) equal to the resonance frequency
- (b) less than the resonance frequency
- (c) greater than resonance frequency
- (d) not zero.
- 1.4. For the compensated attenuator of the given figure, the impulse response under the condition $R_1C_1 = R_2C_2$ is

(a)
$$\frac{R_2}{R_1 + R_2} \left[1 - e^{-\frac{1}{R_1 C_1}} \right] u(t)$$

(b)
$$\frac{R_2}{R_1 + R_2} \delta(t)$$

(c)
$$\frac{R_2}{R_1 + R_2} u(t)$$

(d)
$$\frac{R_2}{R_1 + R_2} 1 - e^{-\frac{1}{R_1 C_1}} . u(t)$$

1.5. Of the four networks, N1,N2, N3 and N4 of the given figure, the networks having identical driving point functions are

- (a) N, and N,
- (b) N₂ and N₄
- (c) N_1 and N_3 (d) N_1 and N_4
- 1.6. A linear time-invariant system is described by the state variable model

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- (a) The system is completely controllable
- (b) The system is not completely controllable
- (c) The system is completely observable
- (d) The system is not completely observable.
- 1.7. A process with open-loop model G(s) = $\frac{k e^{-sT_k}}{t s + 1}$

is controlled by a PID controller.

For this process

- (a) the integral mode improves transient performance
- (b) the integral mode improves steady-state performance
- (c) the derivative mode improves transient performance
- (d) the derivative mode improves steady-state performance.

- 1.8. A linear discrete-time system has the characteristic equation, $z^3 - 0.81z = 0$. The system
 - (a) is stable
 - (b) is marginally stable
 - (c) is unstable
 - (d) stability cannot be assessed from the given information.
- 1.9. Bode plot of a stable system is shown in the given figure. The transfer function of the system is ----

1.10. Given a unity feedback system with open-loop transfer function, $G(a) = \frac{K}{s(s+1)(s+2)}$. The root locus plot of the system is of the form.

- 1.11. A semiconductor is irradiated with light such that carriers are uniformly generated throughout its volume. The semiconductor is n-type with $N_D=10^{19}$ per cm³. If the excess electron concentration in the steady state is $\Delta n=10^{15}$ per cm³ and if $\tau_p=10\mu$ sec [minority carrier life time] the generation rate due to irradiation
 - (a) is 10²⁰ e-h pairs/cm³/s
 - (b) is 1024 e-h pairs/cm3/s
 - (c) is 1010 e-h pairs/cm²/s
 - (d) cannot be determined as the given data is insufficient.
- 1.12. A P N junction series with a 100 ohms resistor, is forward based so that a current of 100 mA flows. If the voltage across this

combination is instantaneously reversed to 10 V at t = 0, the reverse current that flows through the diode at t = 0 is approximately given by

- (a) 0 mA
- (b) 100 mA
- (c) 200 mA
- (d) 50 mA
- 1.13. An infrared LED is usually fabricated from
 - (a) Ge
- (b) Si
- (c) Ga As
- (d) Ga As P.
- 1.14. In a transistor having finite B, the forward bias across the base emitter junction is kept constant and the reverse bias across the collector-base junction is increased. Neglecting the leakage across the collector-base junction and the depletion region generatin current, the base current will______ (increase/decrease/remain constant).
- 1.15. An *n*-channel JFET has a pinch-off voltage of $V_p = -5 \text{ V}$, V_{DS} (max) = 20 V, and $\delta_m = 2\text{mA/V}$. The minimum 'ON' resistance is achieved in the JEFT for
 - (a) $V_{CS} = -7 \text{ V} \text{ and } V_{DS} = 0 \text{ V}$
 - (b) $V_{CS} = 7 \text{ V} \text{ and } V_{DS} = 0 \text{ V}$
 - (c) $V_{CS} = 0 \text{ V} \text{ and } V_{DS} = 20 \text{ V}$
 - (d) $V_{CS} = -7 \text{ V} \text{ and } V_{DS} = 20 \text{ V}$
- 1.16. The JFET in the circuit shown in the given figure has an $I_{DSS} = 10$ mA and $V_p = 5$ V. The value of the resistance R_s for a drain current $I_{DS} = 6.4$ mA is (select the nearest value)

- (a) 150 ohms
- (b) 470 ohms
- (c) 560 ohms
- (d) 1 kilo ohm.
- 1.17. An op. amp. has an offset voltage of 1 mV and is ideal in all other respects. If this op. amp. is used in the circuit shown in the given figure, the output voltage will be (select the nearest value)

- (a) 1 mV
- (b) 1 V
- (c) ± 1 V
- (d) 0 V.

1.18. If the transistors in the given figure have high values of β and a V_{BE} of 0.65 volt, the current I, flowing through the 2 kilo ohms resistance will be

1.19. The circuit of given figure, uses an ideal op amp. For small positive values of V_{in}, the circuit works as

(a) a halfwave rectifier VID R

(c) a logarithmic amplifier

(d) an exponential amplifier.

1.21. The 6 V Zener diode shown in given figure has zero zener resistance and a knee current of 5 mA. The minimum value of R so that the voltage across it does not fall below 6 V is

- (a) 1.2K ohms
- (b) 80 ohms
- (c) 50 ohms
- (d) 0 ohms
- 1.22. The logic realized by the circuit shown in given figure is

- (a) F = A.C
- (b) F = A + C
- (c) $F = B \cdot C$
- (d) F = B + C

- 1.23. Choose the correct statement(s) fror the following
 - (a) PROM contains a programmable AND array and a fixed OR array
 - (b) PLA contains a fixed AND array and a programmable OR array
 - (c) PROM contains a fixed AND array and a programmable OR array
 - (d) PLA contains a programmable AND array and a programmable OR array.
- 1.24. Given figure shows the circuit of a gate in the Resistor Transistor Logic (RTL) family. The circuit represents a

- (a) NAND
- (b) AND
- (c) NOR
- (d) OR
- 1.25. The initial contents of the 4-bit serial-in-parallelout, right-shift, Shift. Register shown in given figure is 0110. After three clock pulses are applied, the contents of the Shift Register will be

- (a) 0000
- (b) 0101
- (c) 1010
- (d) 1111.
- In an 8085 microprocessor system with memory mapped I/O,
 - (a) I/O devices have 16-bit addresses
 - (b) I/O devices are accessed using IN and OUT instructions
 - (c) there can be a maximum of 256 input devices and 256 output devices
 - (d) arithmetic and logic operations can be directly performed with the I/O data.

1.27. The following program is run on 8085 microprocessor:

Memory Address in hex	Instruction			
2000	LXI SP, 1000			
2003	PUSH H			
2004	PUSH D			
2005	CALL 2050			
2008	POP H			
2009	HLT			

At the completion of execution of the program, the program Counter of the 8085 contains

_____ and the Stack Pointeer contains

- 1.28. Dual-slope integration type Analog-to-digital converters provide
 - (a) higher speeds compared to all other types of A/D converters
 - (b) very good accuracy without putting extreme requirements on component stability
 - (c) good rejection of power supply hum
 - (d) better resolution compared to all other types of A/D converters for the same number of bits.
- 1.29. Which of the following signals is/are periodic?
 - (a) $S(t) = \cos 2t + \cos 3t + \cos 5t$
 - (b) $S(t) = \exp(j8\pi t)$
 - (c) $S(t) = \exp(-7t) \sin 10\pi t$
 - (d) $S(t) = \cos 2t \cos 4t$
- 1.30. If G (f) represents the Fourier transform of a signal g (t) which is real and odd symmetric in time, then
 - (a) G (f) is complex
 - (b) G (f) is imaginary
 - (c) G (f) is real
 - (d) G (f) is real and non-negative.
- 1.31. The maximum power efficiency of an AM modulator is
 - (a) 25 %
- (b) 50 %
- (c) 75 % ·
- (d) 100 %
- **1.32.** For a random variable x following the probability density function, p(x), shown in given figure the mean and the variance are, respectively,

- (a) 1/2 and 2/3
- (b) 1 and 4/3
- (c) 1 and 2/3
- (d) 2 and 4/3.

- 1.33. The bit stream 01001 is differentially encoded using 'Delay and Ex OR' scheme for DPSK transmission. Assuming the reference bit as a '1' and assigning phases of '0' and π for 1's and 0's respectively, in the encoded sequence, the transmitted phase sequence becomes
 - (a) $\pi 0 \pi \pi 0$
- (b) 0 ππ00
- (c) 0 mmm0
- (d) ππ 0ππ
- Coherent demodulation of FSK signal can be effected using
 - (a) correlation receiver
 - (b) Bandpass filters and envelope detectors
 - (c) matched filter
 - (d) discriminator detection.
- 1.35. Source encoding in a data communication system is done is order to
 - (a) enhance the information transmission rate
 - (b) reduce the transmission errors
 - (c) conserve the transmitted power
 - (d) facilitate clock recovery in the receiver.
- 1.36. A transmission line whose characteristic impedance is a pure resistance
 - (a) must be a lossless line
 - (b) must be a distortionless line
 - (c) may not be a lossless line
 - (d) may not be a distortionless line.
- 1.37. Which of the following statements is/are correct?
 - (a) All the resonant frequencies of a microwave cavity are harmonics of a single frequency
 - (b) No two of the resonant frequencies of a microwave caity are harmonics of a single frequency
 - (c) Resonant frequencies of a microwave cavity form distinct sets of harmonically related frequency
 - (d) None of the above, because a microwave cavity does not resonate at a number of frequencies.
- Two dissimilar antennas having their maximum directivities equal,
 - (a) must have their beamwidths also equal
 - (b) cannot have their beamwidths equal because they are dissimilar antennas
 - (c) may not necessarily have their maximum power gains equal
 - (d) must have their effictive aperture areas (capture areas) also equal.

- 1.39. The beamwidth-between-first null of uniform linear array of N equally-spaced (element spacing = d), equally-excited antennas is determined by
 - (a) N alone and not by d
 - (b) d alone and not by N
 - (c) the ratio, (N/d)
 - (d) the product, (Nd)

- 1.40. In a multicavity magnetron, strapping is employed primarily
 - (a) to prevent mode jumping
 - (b) to increase the seperation between the resonant frequencies in the π -mode and in the adjacent modes
 - (c) to reduce the back heating of the cathode
 - (d) to increase the output of the magnetron.

ANSWERS

1.1(a,d)	1. 2 (b,c)	1. $3(b,d)$	1. 4 (b)	1. 5 (c)	1. 6 (b,c)	1.7 (b,c)	1.8 (a)	1.9(*)	1. 10 (a)
1. 11 (a)	1. 12 (b)	1. 13 (c)	1. 14 (*)	1.15 (b)	1. 16 (a)	1. 17 (c)	1. 18 (*)	1. 19 (c)	1.20 (*)
1. 21 (a)	1. 22 (b)	1. 23 (c,d)	1. 24 (d)	1. 25 (c)	1. 26 (a,d)	1. 27 (*)	1. 28 (b,c)	1. 29 (a,b)	1. 30 (b)
1. 31 (b)	1. 32 (b)	1. 33 (d)	1. 34 (a,c)	1. 35 (a,b)	1. 36 (c,d)	1. 37 (c)	1. 38 (c)	1. 39 (d)	1. 40 (a,b)