GATE - 2001
Electronics and Communication Engineering

Time Allowed: 3 Hours
Maximum Marks: 150

1. This question paper contains TWO SECTIONS : 'A' and 'B'

2. Section A consists of two questions of the multiple choice type. Question EC1 consists of TWENTY FIVE sub-questions of ONE mark each and question EC2 consists of TWENTY FIVE sub-questions of TWO marks each.

3. Answer Section A only on the special machine-gradable OBJECTIVE RESPONSE SHEET (ORS.) Questions of Section A will not be graded if answered anywhere else.

4. Answer problems of Section B in the answer-book.

5. Write your name, registration number and name of the center at the specified locations on the right half of the ORS for Section A.

6. Using a soft HB pencil darken the appropriate bubble under each digit of your registration number.

7. The Objective Response Sheet will be collected back after 120 minutes have expired from the start of the examination. In case you finish Section A before the expiry of 120 minutes, you may start answering Section B.

8. Questions of Section A are to be answered by darkening the appropriate bubble (marked A, B, C or D) using a soft HB pencil against the question number on the left-hand side of the Objective Response Sheet.

9. In case you wish to change an answer, erase the old answer completely using a good soft eraser.

10. There is no negative marking.

11. Section B consists of TWENTY questions of FIVE marks each. ANY FIFTEEN out of them have to be answered. If more than fifteen questions are attempted, score off the answers not to be evaluated, else only the fifteen unscored answers will be considered strictly.

12. In all 5 mark questions, clearly show the steps. Indicate the appropriate units in all the answers.
SECTION - A

1. This question consists of TWENTY FIVE sub-questions (1.1 - 1.25) of ONE mark each. For each of these sub-questions, four possible answers (A, B, C and D) are given, out of which only one is correct. Answer each sub-question by darkening the appropriate bubble on the OBJECTIVE RESPONSE SHEET (ORS) using a soft HB pencil. Do not use the ORS for any rough work. You may like to use the Answer Book for any rough work, if needed.

1.1. The Voltage e_0 in the figure,

(a) 2 V
(b) $\frac{4}{3}$ V
(c) 4 V
(d) 8 V

1.2. If each branch of a Delta circuit has impedance $\sqrt{3} Z$, then each branch of the equivalent Wye circuit has impedance.

(a) $\frac{Z}{\sqrt{3}}$
(b) $3Z$
(c) $3\sqrt{3}Z$
(d) $\frac{Z}{3}$

1.3. The transfer function of a system is given by $H(s) = \frac{1}{s^2(s-2)}$. The impulse response of the system is

(a) $(t^2 + e^{-2t})u(t)$
(b) $(t + e^{-2t})u(t)$
(c) $(t - e^{-2t})u(t)$
(d) $(t - 2)e^{-2t}u(t)$

1.4. The admittance parameter Y_{12} in the 2-port network in the figure,

(a) -0.2 mho
(b) 0.1 mho
(c) -0.05 mho
(d) 0.05 mho

1.5. The region of convergence of the z-transform of a unit step function is

(a) $|z| > 1$
(b) $|z| < 1$
(c) Real part of $z > 0$
(d) Real part of $z < 0$

1.6. The current gain of a BJT is

(a) $\frac{I_C}{I_B}$
(b) $\frac{I_B}{I_E}$
(c) I_C
(d) $\frac{I_C}{I_E}$

1.7. MOSFET can be used as a

(a) current controlled capacitor
(b) voltage controlled capacitor
(c) current controlled inductor
(d) voltage controlled inductor

1.8. The effective channel length of a MOSFET in saturation decreases with increase in

(a) gate voltage
(b) drain voltage
(c) source voltage
(d) body voltage

1.9. The ideal OP-AMP has the following characteristics:

(a) $R_1 = \infty$, $A = \infty$, $R_0 = 0$
(b) $R_1 = 0$, $A = \infty$, $R_0 = 0$
(c) $R_1 = \infty$, $A = \infty$, $R_0 = \infty$
(d) $R_1 = 0$, $A = \infty$, $R_0 = \infty$

1.10. The 2's complement representation of -17 is

(a) 11110
(b) 01111
(c) 11110
(d) 10001

1.11. Consider the following two statements:

Statement 1 : A stable multivibrator can be used for generating square wave.
Statement 2 : B stable multivibrator can be used for storing binary information.

(a) Only statement 1 is correct
(b) Only statement 2 is correct
(c) Both the statements 1 and 2 are correct
(d) Both the statements 1 and 2 are incorrect

1.12. For the ring oscillator shown in the figure, the propagation delay of each inverter is 100 pico sec. What is the fundamental frequency of the oscillator output?

(a) 10 MHz
(b) 100 MHz
(c) 1 GHz
(d) 2 GHz
1.13 An 8085 microprocessor based system uses a 4K × 8 bit RAM whose starting address is A000 H. The address of the last byte in this RAM is
(a) OFFH (b) 1000 H
(c) B9FF H (d) BA00 H

1.14 The equivalent of the block diagram in the figure, given in

1.15 If the characteristic equation of a closed-loop system is \(s^2 + 2s + 2 = 0 \), then the system is
(a) overdamped (b) critically damped
(c) underdamped (d) undamped

1.16 The root-locus diagram for a closed-loop feedback system is shown in the figure is. The system is overdamped.

1.18 Let \(\delta(t) \) denote the delta function. The value of the integral \(\int_{-\infty}^{\infty} \delta(t) \cos \left(\frac{3t}{2} \right) dt \) is
(a) 1 (b) -1
(c) 0 (d) \(\frac{\pi}{2} \)

1.19 A bandlimited signal is sampled at the Nyquist rate. The signal can be recovered by passing the samples through
(a) an RC filter
(b) an envelope detector
(c) a PLL
(d) an ideal low-pass filter with the appropriate bandwidth

1.20 The PDF of a Gaussian random variable \(X \) is given by \(Pr(x) = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-4)^2}{18}} \). The probability of the event \(\{ X = 4 \} \) is
(a) \(\frac{1}{2} \) (b) \(\frac{1}{3\sqrt{2\pi}} \)
(c) 0 (d) \(\frac{1}{4} \)

1.21 If a signal \(f(t) \) has energy \(E \), the energy of the signal \(f(2t) \) is equal to
(a) \(E \) (b) \(\frac{E}{2} \)
(c) 2E (d) 4E

1.22 A transmission line is distortionless if
(a) \(RL = \frac{1}{GC} \) (b) \(RL = GC \)
(c) \(LG = RC \) (d) \(RG = LC \)
1.23 If a plane electromagnetic wave satisfies the equation \(\frac{\partial^2 E_y}{\partial z^2} = c^2 \frac{\partial^2 E_y}{\partial t^2} \), the wave propagates in the
(a) x-direction
(b) z-direction
(c) y-direction
(d) xy plane at an angle of 45° between the x and z directions

1.24 The phase velocity of waves propagating in a hollow metal waveguide is
(a) greater than the velocity of light in free space.
(b) less than the velocity of light in free space.
(c) equal to the velocity of light in free space.
(d) equal to the group velocity.

1.25 The dominant mode in a rectangular waveguide is TE10, because this mode has
(a) no attenuation
(b) no cut-off
(c) no magnetic field component
(d) the highest cut-off wavelength

2. This question consists of TWENTY FIVE sub-questions (2.1–2.25) of TWO marks each. For each of these sub-questions, four possible answers (A, B, C and D) are given, out of which only one is correct. Answer each sub-question by darkening the appropriate bubble on the OBJECTIVE RESPONSE SHEET (ORS) using a soft HB pencil. Do not use the ORS for any rough work. You may like to use the Answer Book for any rough work, if needed.

2.1 The voltage \(v_0 \) in the figure,

(a) 48 V
(b) 24 V
(c) 36 V
(d) 28 V

2.2 In the figure, the value of the load resistor \(R \) which maximizes the power delivered to it is

\(E_m \cos 10t \)

2.3 When the angular frequency \(\omega \) in the figure varied from 0 to \(\infty \), the locus of the current phasor \(I_2 \) is given by

\[I_2(t) = I_0 \cos(\omega t) \]

2.4 The Z parameters \(Z_{11} \) and \(Z_{21} \) for the 2-port network in the figure,

(a) \(Z_{11} = \frac{6}{11} \Omega \); \(Z_{21} = \frac{16}{11} \Omega \);
(b) \(Z_{11} = \frac{6}{11} \Omega \); \(Z_{21} = \frac{4}{11} \Omega \);
(c) \(Z_{11} = \frac{6}{11} \Omega \); \(Z_{21} = \frac{4}{11} \Omega \);
(d) \(Z_{11} = \frac{4}{11} \Omega \); \(Z_{21} = \frac{4}{11} \Omega \);
2.5 An npn BJT has \(gm = 38 \text{mA/V}, C_i = 10^{-14} \text{F}, \ C_C = 4 \times 10^{-12} \text{F}, \) and DC current gain \(\beta_n = 90. \) For this transistor, \(f_T \) and \(f_R \) are
(a) \(f_T = 1.64 \times 10^6 \text{Hz} \) and \(f_R = 1.47 \times 10^{10} \text{Hz} \)
(b) \(f_T = 1.47 \times 10^6 \text{Hz} \) and \(f_R = 1.64 \times 10^6 \text{Hz} \)
(c) \(f_T = 1.33 \times 10^7 \text{Hz} \) and \(f_R = 1.47 \times 10^{10} \text{Hz} \)
(d) \(f_T = 1.47 \times 10^6 \text{Hz} \) and \(f_R = 1.33 \times 10^{12} \text{Hz} \)

2.6 The transistor shunt regulator shown in the figure is has a regulated output voltage of 10 V, when the input varies from 20 V to 30 V. The relevant parameters for the zener diode and the transistor are: \(V_Z = 9.5 \text{V}, V_{ZT} = 0.3 \text{V}, \beta = 99. \) Neglect the current through \(R_B. \) Then the maximum power dissipated in the zener diode \((P_Z) \) and the transistor \((P_T) \) are

(a) \(P_Z = 75 \text{mW}, P_T = 7.9 \text{W} \)
(b) \(P_Z = 85 \text{mW}, P_T = 8.9 \text{W} \)
(c) \(P_Z = 95 \text{mW}, P_T = 9.9 \text{W} \)
(d) \(P_Z = 115 \text{mW}, P_T = 11.9 \text{W} \)

2.7 The oscillator circuit shown in the figure,

(a) Hartley oscillator with \(f_{oscillation} = 79.6 \text{MHz} \)
(b) Colpitts oscillator with \(f_{oscillation} = 79.6 \text{MHz} \)
(c) Hartley oscillator with \(f_{oscillation} = 159.2 \text{MHz} \)
(d) Colpitts oscillator with \(f_{oscillation} = 159.2 \text{MHz} \)

2.8 The inverting OP-AMP shown in the figure has an open-loop gain of 100. The closed-loop gain \(\frac{V_o}{V_i} \) is

(a) -8
(b) -9
(c) -10
(d) -11

2.9 In the figure, assume the OP-AMPS to be ideal. The output \(V_o \) of the circuit is

(a) \(10 \cos(100t) \)
(b) \(10 \int_0^t \cos(100t) dt \)
(c) \(10 \int_0^t \cos(100t) dt \)
(d) \(10 \int_0^t \frac{d}{dt} \cos(100t) dt \)

2.10 In the figure, the LED

(a) emits light when both \(S_1 \) and \(S_2 \) are closed.
(b) emits light when both \(S_1 \) and \(S_2 \) are open.
(c) emits light when only \(S_1 \) or \(S_2 \) is closed.
(d) does not emit light, irrespective of the switch positions.

2.11 In the TTL circuit in the figure, \(S_2 \) to \(S_9 \) are select lines and \(X_1 \) to \(X_8 \) are input lines. \(S_0 \) and \(X_9 \) are LSBs. The output \(Y \) is

(a) indeterminate
(b) \(A \oplus B \)
(c) \(\overline{A} \oplus B \)
(d) \(C \cdot (A \oplus B) + \overline{C} \cdot (A \oplus B) \)
2.12 The digital block in the figure, realized using two positive edge triggered D-flip-flops. Assume that for \(t < t_0 \), \(Q_1 = Q_2 = 0 \). The circuit in the digital block is given by

![Diagram of digital block]

(a) Fig. 2.12 (a)
(b) Fig. 2.12 (b)
(c) Fig. 2.12 (c)
(d) Fig. 2.12 (d)

2.13 In the DRAM cell in the figure is the \(V_r \) of the NMOSFET is 1 V. For the following three combinations of WL and BL voltages.

![Word Line and Bit Line Diagram]

(a) 5 V; 8 V; 7 V
(b) 4 V; 3 V; 4 V
(c) 5 V; 5 V; 5 V
(d) 4 V; 4 V; 4 V

2.14 The impulse response functions of four linear systems \(S_1, S_2, S_3, S_4 \) are given respectively by

\[
\begin{align*}
h_1(t) &= 1 \\
h_2(t) &= U(t) \\
h_3(t) &= \frac{U(t)}{1+1} \\
h_4(t) &= e^{-3t}U(t)
\end{align*}
\]

Where \(U(t) \) is the unit step function. Which of these systems is time invariant, causal, and stable?

(a) \(S_1 \)
(b) \(S_2 \)
(c) \(S_3 \)
(d) \(S_4 \)

2.15 An electrical system and its signal-flow graph representations are shown in the figure respectively. The values of \(G_2 \) and \(H \), respectively, are

![Signal-flow graph]

\[
\begin{align*}
\frac{Z_1(s)}{Z_2(s) + Z_3(s) + Z_4(s)} = \frac{-Z_3(s)}{Z_1(s) + Z_3(s)} \\
\frac{-Z_4(s)}{Z_2(s) - Z_3(s) + Z_4(s)} = \frac{-Z_3(s)}{Z_1(s) + Z_3(s)} \\
\frac{Z_2(s)}{Z_3(s) + Z_1(s) + Z_4(s)} = \frac{Z_3(s)}{Z_1(s) + Z_3(s)} \\
\frac{-Z_6(s)}{Z_5(s) - Z_3(s) + Z_4(s)} = \frac{Z_3(s)}{Z_1(s) + Z_3(s)}
\end{align*}
\]

2.16 The open-loop DC gain of a unity negative feedback system with closed-loop transfer function \(\frac{s^2 + 7s + 13}{s^4 + 4} \) is

(a) \(\frac{4}{13} \)
(b) \(\frac{4}{9} \)
(c) \(4 \)
(d) \(13 \)

2.17 The feedback control system in the figure is stable.

![Feedback control system diagram]

(e) for all \(K > 0 \)
(b) only if \(K > 1 \)
(c) only if \(0 < K < 1 \)
(d) only if \(0 < K < 1 \)

2.18 A video transmission system transmits 625 picture frames per second. Each frame consists of a 400 \(\times \) 400 pixel grid with 64 intensity levels per pixel. The data rate of the system is

(a) 16 Mbps
(b) 100 Mbps
(c) 600 Mbps
(d) 6.4 Gbps

2.19 The Nyquist sampling interval, for the signal \(\sin c(700t) + \sin c(300t) \) is

(a) \(\frac{1}{350} \) sec
(b) \(\frac{1}{350} \) sec
(c) \(\frac{1}{700} \) sec
(d) \(\frac{\pi}{175} \) sec
2.20 During transmission over a communication channel, bit errors occur independently with probability p. If a block of n bits is transmitted, the probability of at most one bit error is equal to
(a) $1 - (1 - p)^n$
(b) $p + (n - 1)(1 - p)$
(c) $np(1 - p)^{n-1}$
(d) $(1 - p)^n + np(1 - p)^{n-1}$

2.21 The PSD and the power of a signal $g(t)$ are, respectively, $S_g(\omega)$ and P_g. The PSD and the power of the signal $ag(t)$ are, respectively,
(a) $a^2S_g(\omega)$ and a^2P_g
(b) $aS_g(\omega)$ and aP_g
(c) $aS_g(\omega)$ and a^2P_g
(d) $a^2S_g(\omega)$ and aP_g

2.22 A material has conductivity of 10^{-2} mho/m and a relative permittivity of 4. The frequency at which the conduction current in the medium is equal to the displacement current is
(a) 45 MHz
(b) 90 MHz
(c) 450 MHz
(d) 900 MHz

2.23 A uniform plane electromagnetic wave incident normally on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?
(a) 10%
(b) 25%
(c) 50%
(d) 75%

2.24 A medium wave radio transmitter operating at a wavelength of 492 m has a tower antenna of height 124 m. What is the radiation resistance of the antenna?
(a) 25 Ω
(b) 36.5 Ω
(c) 50 Ω
(d) 73 Ω

2.25 In a uniform linear array, four isotropic radiating elements are spaced $\frac{\lambda}{4}$ apart. The progressive phase shift between the elements required for forming the main beam at 60° off the end-fire is
(a) $-\pi$ radians
(b) $-\frac{\pi}{2}$ radians
(c) $-\frac{\pi}{4}$ radians
(d) $-\frac{\pi}{8}$ radians

SECTION B (75 Marks)

This section consists of TWENTY questions of FIVE marks each. ANY FIFTEEN out of these questions have to be answered in the Answer Book provided.

3. For the circuit shown in the figure, determine the phasors E_2, E_0, I_1, and I_2.

4. The circuit shown in the figure, operating in steady-state with switch S_1 closed. The switch S_2 is opened at $t = 0$.

5. The admittance parameters of a 2-port network shown in the figure, given by $Y_{11} = 2$ mho, $Y_{12} = -0.5$ mho, $Y_{21} = 4.5$ mho, $Y_{22} = 1$ mho. The output port is terminated with a load admittance $Y_L = 0.2$ mho. Find E_2 for each of the following conditions.

(a) $E_1 = 10 \angle 0^o$ V
(b) $I_1 = 10 \angle 0^o$ A
(c) A source $10 \angle 0^o$ V in series with a 0.25 Ω resistor is connected to the input port.
6. For the circuit shown in the figure, D_1 and D_2 are identical diodes with ideality factor of unity. The thermal voltage $V_T = 25$ mV.

(a) Calculate V_T and V_T.
(b) If the reverse saturation current, I_s, for the diode is 1 pA, then compute the current I through the circuit.

7. An emitter-follower amplifier is shown in the figure. Z_s is the impedance looking into the base of the transistor and Z_o is the impedance looking into the emitter of the transistor.

(a) Draw the small signal equivalent circuit of the amplifier.
(b) Obtain an expression for Z_s.
(c) Obtain an expression for Z_o.
(d) Determine Z_s and Z_o if a capacitor C_L is connected across R_L.

8. Assume that the OP-AMP in the figure, ideal

(a) Obtain an expression for v_o in terms of v_i, R, and the reverse saturation current I_s of the transistor.
(b) If $R = 10 \Omega$, $I_s = 1$ pA and the thermal voltage $V_T = 25$ mV, then what is the value of the output voltage v_o for an input voltage $v_i = 1$ V?
(c) Suppose that the transistor in the feedback path is replaced by a $p-n$ junction diode with a reverse saturation current of I_s. The p-side of the diode is connected to node A and the n-side to node B. Then what is the expression for v_o in terms of v_i, R and I_s?

9. A monochrome video signal that ranges from 0 to 8V, is digitized using an 8-bit ADC.
 (a) Determine the resolution of the ADC in V/bit.
 (b) Calculate the mean squared quantization error.
 (c) Suppose the ADC is counter controlled. The counter is upcount and positive edge triggered with clock frequency 1 MHz. What is the time taken in seconds to get a digital equivalent of 1.59 V?

10. In the figure, the output of the oscillator, V_1 has 10V peak amplitude with zero DC value. The transfer characteristic of the Schmitt inverter is also shown in the figure is. Assume that the JK flip-flop is reset at time $t = 0$.

(a) What is the period and duty cycle of the waveform V_2?
(b) What is the period and duty cycle of the waveform V_3?
(c) Sketch V_1, V_2 and V_3 for the duration $0 \leq t \leq 6 \mu s$. Clearly indicate the exact timings when the waveforms V_2 and V_3 make high-to-low and low-to-high transitions.

11. For the digital block shown in the figure, the output $Y = f(S_4, S_3, S_2, S_1)$ where S_4 is MSB and S_1 is LSB. Y is given in terms of minterms as $Y = \sum m(1, 5, 6, 7, 11, 12, 13, 15)$ and its complement is $\bar{Y} = \sum m(0, 2, 3, 4, 8, 9, 10, 14)$.

(a) Digital Logic Box 1
(b) Digital Logic Box 2
(c) Digital Logic Box 3
(d) Digital Logic Box 4
12. Consider the following sequence of instructions for an 8085 microprocessor based system.

<table>
<thead>
<tr>
<th>Memory Address</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF00</td>
<td>MOV A, FFH</td>
</tr>
<tr>
<td>FF02</td>
<td>INR A</td>
</tr>
<tr>
<td>FF03</td>
<td>JC FF0CH</td>
</tr>
<tr>
<td>FF06</td>
<td>ORI A8H</td>
</tr>
<tr>
<td>FF08</td>
<td>JM FF15H</td>
</tr>
<tr>
<td>FF0B</td>
<td>XRA A</td>
</tr>
<tr>
<td>FF0C</td>
<td>OUT PORT1</td>
</tr>
<tr>
<td>FF0E</td>
<td>HLT</td>
</tr>
<tr>
<td>FF10</td>
<td>XRI FFH</td>
</tr>
<tr>
<td>FF12</td>
<td>OUT PORT2</td>
</tr>
<tr>
<td>FF14</td>
<td>HLT</td>
</tr>
<tr>
<td>FF15</td>
<td>MOV A, FFH</td>
</tr>
<tr>
<td>FF17</td>
<td>ADI 02H</td>
</tr>
<tr>
<td>FF19</td>
<td>RAL</td>
</tr>
<tr>
<td>FF1A</td>
<td>JZ FF23H</td>
</tr>
<tr>
<td>FF1D</td>
<td>JC FF10H</td>
</tr>
<tr>
<td>FF20</td>
<td>JNC FF12H</td>
</tr>
<tr>
<td>FF23</td>
<td>CMA</td>
</tr>
<tr>
<td>FF24</td>
<td>OUT PORT3</td>
</tr>
<tr>
<td>FF26</td>
<td>HLT</td>
</tr>
</tbody>
</table>

(a) If the program execution begins at the location FF00H, write down the sequence of instructions which are actually executed till a HLT instruction. (Assume all flags are initially RESET).

(b) Which of the three ports (PORT1, PORT2 and PORT3) will be loaded with data, and what is the bit pattern of the data?

13. A feedback control system is shown in figure.

(a) Draw the signal-flow graph that represents the system.

(b) Find the total number of loops in the graph and determine the loop-gains of all the loops.

(c) Find the number of all possible combinations of non-touching loops taken two at a time.

(d) Determine the transfer function of the system using the signal-flow graph.

14. Consider the feedback control system shown in figure.

(a) Find the transfer function of the system and its characteristic equation.

(b) Use the Routh-Hurwitz criterion to determine the range of K for which the system is stable.

15. For the feedback control system shown in the figure, the process transfer function is

\[G_p(s) = \frac{1}{s(s+1)} \]

and the compensation factor of the power amplifier is \(K \geq 0 \). The design specifications required for the system, time constant is 1 sec and a damping ratio of 0.707.

(a) Find the desired locations of the closed-loop poles.

(b) Write down the required characteristic equation for the system. Hence determine the PD controller transfer function \(G_0(s) \) when \(K = 1 \).

(c) Sketch the root-locus for the system.
16. The Fourier transform $G(\omega)$ of the signal $g(t)$ in the figure, given as $G(\omega) = \frac{1}{\omega^2} \left(e^{j\omega} - j\omega e^{j\omega} - 1 \right)$. Using this information and the time-shifting and time-scaling properties, determine the Fourier transform of signals in the figure.

18. A baseband signal $g(t)$ bandlimited to 100 Hz modulates a carrier of frequency f_c, Hz. The modulated signal $g(t)\cos 2\pi ft$ is transmitted over a channel whose input x and output y are related by $y = 2x + x^2$. The spectrum of $g(t)$ is shown in the figure. Sketch the spectrum of the transmitted signal and the spectrum of the received signal.

19. A periodic signal $g(t)$ is shown in the figure. Determine the PSD of $g(t)$.

20. A system of three electric charges lying in a straight line is in equilibrium. Two of the charges are positive with magnitudes Q and $2Q$, and are 50 cm apart. Determine the sign, magnitude and position of the third charge.

21. A medium has a breakdown strength of 16 KV/m. Its relative permeability is 1.0 and relative permittivity is 4.0. A plane electromagnetic wave is transmitted through the medium. Calculate the maximum possible power flow density and the associated magnetic field.

22. A rectangular hollow metal waveguide has dimensions $a = 2.29$ cm and $b = 1.02$ cm. Microwave power at 10 GHz is transmitted through the waveguide in the TE$_{10}$ mode.
 (a) Calculate the cut-off wavelength and the guide wavelength for this mode.
 (b) What are the other (TE or TM) modes that can propagate through the waveguide?
 (c) If $a = b = 2.29$ cm, What are the modes which can propagate through the waveguides?

ANSWERS

1. 1 (c) 2 (a) 3 (b) 4 (c) 5 (a) 6 (c) 7 (b) 8 (a) 9 (a) 10 (d)
11 (c) 12 (c) 13 (d) 14 (d) 15 (c) 16 (d) 17 (d) 18 (a) 19 (d) 20 (d)
11 (b) 12 (c) 13 (b) 14 (a) 15 (d) 16 (d) 17 (d) 18 (a) 19 (a) 20 (b)
16 (b) 17 (c) 18 (c) 19 (c) 20 (d) 21 (a) 22 (a) 23 (b) 24 (a) 25 (c)